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Abstract 

This paper presents a diagnostic expert system for detecting sensor failures of the incinerator 
control system. The domain knowledge of the system is based on system models, causal relation- 
ships among failure events, and the heuristic operator knowledge for handling off-normal situa- 
tions. The inference functions of the diagnostic system are jointly provided by rule-based back- 
ward/forwarding chaining, causal relationship-based Bayesian network inference, and system 
model-based Kalman filtering inference. As examples of applying the proposed framework, failure 
diagnosis of the steam temperature regulator and the detection of thermocouple drifts are presented. 

1. Introduction 

The regulation of emissions from hazardous waste incinerators is defined in 
terms of steady state operations within a defined operating range. However, 
emissions may vary markedly from those at steady state during transients or 
due to operational failures. Furthermore, unnoticed drifts from defined oper- 
ating conditions may lead to a marked increase in one type of emission, say, 
submicron metal aerosols, even though the destruction efficiency of the prin- 
cipal organic waste stays in the required range. Due to diversity of waste com- 
position, system malfunction, lack of operator experience and operator error, 
off-normal situations may occur during the operation of incinerators. Partic- 
ulate, metal products of incomplete combustion (PICs) and hydrogen chloride 
(HCl) emissions may go beyond the regulation limits. 

Under off-normal situations, operators use sensor information or alarm sig- 
nals to do fault diagnosis based on their training and operating experience. 
When a system alarm is activated, the operator determines the seriousness of 
the situation and initiates appropriate action. The diagnostic decision is based 
on the type of alarm, the value of related process variables, and the operator’s 
background, training, and mental model of the system. This human decision 
process has certain disadvantages. First, the availability of process experts may 
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depend on work shift, vacations, and the like. Second, operators may be well- 
trained in standard procedures but ill-equipped to handle unusual events such 
as spurious signals, and wrong controller set-values due to human error, etc, 
and stress associated with emergency situations can compound the difficulty 
of decision making. Third, the operator’s logic model of the process may be 
incorrect. Therefore, when systems are very complex and as the information 
available to operators increases, it becomes more difficult to rely on human 
operators for diagnosis. 

In recent years, research in the field of Artificial Intelligence (AI) has had 
many important successes. Among the most significant of these has been the 
development of powerful computer systems known as “expert” or “knowledge- 
based” systems. These computer systems are designed to represent and apply 
factual knowledge of specific areas of expertise to solve problems. The poten- 
tial usefulness of expert systems has led to worldwide efforts to apply them to 
various technologies [ 11. Expert systems that perform diagnosis use situation 
descriptions, monitoring data, behavior characteristics, and some other knowl- 
edge about the system to infer probable causes of system malfunctions. These 
systematic and automatic diagnosis functions should allow a more rapid and 
detailed analysis of the problem in a timely fashion and reduce errors in human 
judgement. 

The problem of diagnosis has been addressed by many authors and is the 
subject of books by Himmelblau [ 21 and Pau [ 31. Qualitative approaches in- 
volving fault trees and related diagrams have been reviewed by Lees [4]. Quan- 
titative approaches involving filtering and estimation have been reviewed by 
Isermann [ 51. An extensive survey of diagnostic expert systems was provided 
by Pau [ 61 and Gilmore and Gingher [ 71. 

The automation of fault diagnosis was primarily handicapped in the past by 
the lack of appropriate techniques to represent the knowledge-based, symbolic 
reasoning of an expert diagnostician. Many of the past approaches in applying 
expert system methodology to fault diagnosis have focused on designing sys- 
tems that reason with deterministic knowledge that is system or process spe- 
cific. Such systems often lead to erroneous conclusions when confronted with 
unanticipated faults. 

Although expert systems have been put into practical use in other applica- 
tions, such as medical diagnosis [B] , expert system development for hazardous 
waste incinerators is still in its infancy. Very few papers have been published 
[ 9,101. This paper is on the application of the developed methodology for real- 
time expert systems [ll-141 to a hazardous waste incineration system. This 
expert system is developed to perform diagnosis of sensor or system component 
failures during operation of an incinerator. The diagnosis system infers the 
most probable causes of control system malfunctions from the observed 
evidence. 

The domain knowledge representation of the diagnostic expert system for a 
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liquid injection incinerator is based on system models, the physical intercon- 
nections of the instrument elements, and the causal relationships among fail- 
ure events as well as heuristic operator knowledge for handling off-normal 
situations. The system models consists of a set of discrete stochastic state 
equations which represent the relationships between the system state variables 
and the control variables, and a set of discrete stochastic measurement equa- 
tions which describe the relationships between the real-time monitored state 
variable and the unmeasurable state variables. The causal-consequence rela- 
tionships among failure events are represented by Bayesian networks [ 151 
which are directed acyclic graphs in which the nodes represent failure events, 
the arcs signify the existence of direct causal influence between the linked 
failure events, and the strengths of these influences are quantified by condi- 
tional probabilities. The rules and facts are collected based on system design 
and operating experience with incinerators. Based on the created knowledge 
base, Kalman filter theory [ 161 and Bayesian inference theory [ 151 are used 
to perform diagnosis of the most probable sensor or control system failures 
under off-normal situations. 

2. Inference engines for diagnosis 

Expert systems that perform diagnosis use situation descriptions, behavior 
characteristics, or knowledge about the system to infer probable causes of sys- 
tem malfunctions. Examples are determining the causes of diseases from 
symptoms observed in patients, locating faults in electrical circuits, detecting 
spurious sensor signals in a process control system, finding defective compo- 
nents in a chemical treatment plant, and inferring the proper causes of infla- 
tion in an economical system, etc. Diagnosis systems are often consultants that 
not only diagnose the problem but also predict possible hidden failures. They 
may interact with the user to help find the faults and then suggest courses of 
action to correct them. 

2.1 Diagnosis by a rule-based system 
Rule-based diagnosis approaches systematize the thought process that hu- 

man experts use to perform diagnosis. Rule-based expert systems can capture 
engineering design and operating experience and make it available at all times. 
By using empirical knowledge, diagnosis can be very efficient as the length of 
the reasoning process required to reach a conclusion tends to be quite small. 

Many cases of diagnosis (especially medical diagnosis) have been success- 
fully demonstrated through the development of first generation expert systems 
which use only the so-called shallow or heuristic knowledge of human experts 
in the form of production rules [ 81. Shallow knowledge in this form constitutes 
a heuristic association between observed data and either an intermediate or 
final diagnostic conclusion. These associations are based on the empirically 
derived knowledge of human experts and represent the compilation of a deeper 



Fig. 1. A typical inference tree. 

understanding of the problem domain. This reasoning process constructs a 
logical inference chain which begins with the given data and ends with a di- 
agnostic conclusion produced by inferring the strongest association of the given 
symptoms. 

In order to discuss diagnosis by rule-based systems, we present the inference 
tree conception. As is well known, each rule consists of a premise (or a condi- 
tion, or a cause) part and a conclusion (or an action, or a consequence) part. 
We can construct a tree whose nodes are the clauses used in the rule and whose 
branches are arrows connecting the clauses. When clauses are joined by an 
AND connective, we have an “AND node”, whenever clauses are joined with the 
OR connective, we have an “OR node”. Sometimes nodes may consist of both 
an AND connective and an OR connective; then we call them “AND/OR nodes”. 
The branching in such trees reflects the structure of a set of rules. Such trees 
are called inference trees. 

These trees often provide a good intuition about the structure of the rules. 
By using these trees, we can visualize the process of inference as a movement 
along the branches of the tree. This is called tree traversal. To traverse an AND 

node, we must traverse all of the nodes below it, i.e., we have to prove every 
clause in the AND node. To traverse an OR node, it is sufficient to traverse just 
one of the nodes below, i.e., to prove just one of the OR conditions. A typical 
inference tree is shown in Fig. 1. The corresponding rules are 
RULE 001 

IFAandBandC 
THEN E 

RULE 002 
IFEorD 
THEN G 

RULE 003 
IFFandGorH 
THEN I 
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In order to perform diagnosis, we start at the root of the tree and follow the 
branches toward the leaves until we find causes of the observed consequences. 

2.2 Diagnosis by using Bayesian networks 
Many cases of diagnosis have been demonstrated through the development 

of first generation expert systems which mainly use the shallow or heuristic 
knowledge of human experts in the form of production rules. Expert systems 
based only upon heuristics (rule-based knowledge) lack a detailed model 
framework to analyze process operation and control. This limits their com- 
pleteness, their ability to perform diagnosis beyond current operating experi- 
ence, and their usefulness in tracing and explaining the diagnosis. 

Diagnosis expert systems based on rule-based knowledge alone can prove to 
be inadequate in terms of completeness, performance, flexibility, and expla- 
nation capabilities. To overcome these difficulties, different sources of knowl- 
edge about the diagnosis have to be modeled in the expert systems. In partic- 
ular, deep knowledge of the domain should be used in the diagnostic expert 
systems. Deep knowledge allows the expert to consider theorems and axioms 
of the application area to reach a solution. Deep knowledge provides the lower 
level (causal, functional, and physical) information involved in a diagnostic 
environment and permits a more accurate modeling of the problem domain. 

In this section, we present a diagnosis approach based on probabilistic causal 
knowledge: Bayesian networks [ 151. Diagnosis is performed using Bayesian 
inference. Multiple faults can be diagnosed by propagating each new piece of 
evidence (consequences) through the network via local communication among 
neighboring nodes, with minimum external supervision. At equilibrium, each 
variable in the whole network has a specified probabilistic value which, to- 
gether with all other value assignments, is the optimal global probabilistic 
interpretation of the observed faults. 

Let E stand for all the observed faults (evidence) and W stand for the set of 
all variables in the Bayesian network, including those in E. Any assignment of 
values to the variables in W that is consistent with E will be called a diagnostic 
interpretation of E. Our diagnostic problem is to find a W that maximizes the 
conditional probability P( W/E). In other words, W is the most-probable- 
explanation ( MPE) of the observed faults E if 

The task of finding W will be performed locally, by letting each variable X 
compute the function 

l3EL*(x) =“; P(x, WJE) 
x 

(2) 
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where IV, = W-X. Thus, BEL* (X) stands for the probability of the most prob- 
able explanation of E that also is consistent with the hypothetical assignment 
x=x. 

The diagnosis inference engine presented here is based on the following de- 
composition principle: For every value 3c of a singleton variable X, there is a 
best assignment of the complementary variables IV: which are the best expla- 
nation of the observed faults and are consistent with the hypothetical assign- 
ment X=x. Because there are so many independence relationships embedded 
in the network, the problem of finding the best explanation X=x and E can be 
decomposed into finding the best complementary explanation for each of the 
neighboring nodes, then using this information to choose the best value of X. 
This process of decomposition, which resembles the principle of optimality in 
dynamic programming, can be applied recursively until, at the network’s pe- 
riphery, we meet evidence variables whose fault values were observed, and the 
process halts. Detailed description of the Bayesian diagnosis inference engine 
can be found in reference [ 111. We summarize the algorithm as follows. 

For a given Bayesian network, if node X has n parents, U= { U,, U,, . . . U,}, 
and m children, YI, Yz, . . . . Y,, and node X receives the messages I7&_x ( Ui) 
(i=l, 2, . . . . n) from its parents and &_$X) (j= 1,2, . . . . m) from its children. 

Using these n + m messages together with the fixed conditional probability 
matrix P(X/U,, U,, . . . . U,,), X can identify its best value and further propa- 
gate these messages using the following three steps: 

Step 1 - updating BEL* 
When node X is activated to update its parameters, it simultaneously in- 

spects the I7&,, (U;) and A* xtvj (X) messages communicated by each of its 
parents and children and forms the product 

F(X,U) = ;; Aj;,,(X)P(X/U) & n&,x( UJ (3) 
j=l i=l 

This F function enables X to compute its BEL* (X) function and simulta- 
neously identify the best value of x* from the domain of X 

where 

BEL*(x)=b"f F(X,U) 

(4) 

(5) 

and /I is a constant that is independent of X and need not be computed in 
practice. 
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Step 2 - Updating A* messages 
Using the F function computed in Step 1, node X computes the messages to 

its parents by performing n vector maximizations, one for each parent: 

(i=l, 2, . . . . n) (6) 

Step 3 - Updating 17* messages 
Using the BEL* (X) function computed in Step 1, node Xcomputes the mes- 

sages to its children by 

nL,(X)=BEL* (X)/‘>+,(X) (7) 

The boundary conditions are summarized below for the sake of completeness: 
1. Anticipatory node: representing an uninstantiated variable with no succes- 
sors.ForsuchanodeX,wesetl$+yj(X)=(l,l,...,l). 
2. Observed fault node: representing instantiated leaf nodes. If variable X= xi, 
we introduce a dummy child 2 withA%+, (X) = (0, 0, . . . . 1, . . . . 0) (with 1 in the 
Xi position ) 
3. Root node: representing a variable with no parents. For each root variable 
X, I7* (X) is equal to the prior probability of node X. 

These boundary conditions ensure that the messages defined in eqns. (6) 
and (7) retain their correct semantics on peripheral nodes. 

2.3 Structure of the diagnosis system 
Of primary importance in determing the performance of a diagnostic expert 

system is understanding actually what knowledge is to be used and how that 
knowledge should be formalized, represented, and integrated. In previous sec- 
tions, we discussed the diagnosis inference engine by rule-based and causal 
deep knowledge networks. In this section, we present an integrated diagnostic 
inference engine based on heuristics, causal knowledge, and the system model- 
based deep knowledge. 

Figure 2 shows a block diagram for fault diagnosis. If a system fault appears, 
it has to be detected as early as possible. This can be done by checking if par- 
ticular measurable or unmeasurable estimated state variables are within a cer- 
tain tolerance of the normal value. If this check is not passed, this leads to a 
fault message. The functions up to this point are generally called monitoring 
or, as indicated in the first block of Fig. 2 (feedback loop), as fault detection. 
Once the fault messages are received, the integrated diagnosis system is acti- 
vated to find out the causes of the faults, the size of the faults, and the time 



Fig. 2. Structure of the integrated diagnosis system. 

when the faults occur. The next step is the fault evaluation, that means an 
assessment is made of how the fault will affect the system. 

After the effect of the fault is known, a decision on the action to be taken 
can be made. If the fault is evaluated to be tolerable, the operation of the system 
may continue and if it conditionally tolerable, an adjustment has to be per- 
formed. However, if the fault is intolerable, the operation must be stopped 
immediately and the faults must be eliminated. 

How to use the observed fault messages to find out the probable causes and 
size of the fault is the essential task of the diagnosis inference engine. If we use 
the discrete linear stochastic system model, this diagnosis problem can be stated 
as follows: 

Consider a dynamic system S whose state variables as a function of time are 
a discrete-time stochastic process (X(k), kE Z’}. Suppose that we are interested 
in knowing the value of X(k) for some fixed k, but that X(k) is not directly 
accessible to us for observation. Suppose further, then, that we have made a 
sequence of measurements Y(l), Y(2), . . . . Y(N) (N>k) which are causally 
related to X(k) by means of some measurement system as shown in Fig. 2 and 
that we wish to utilize these observed data to infer the value of X(k), which 
we call as 8( k/N). 

For the diagnosis problem, we have N observations: Y(l), Y(2), . . . . Y(N). 
We want to know what is the actual system state status ri( k/N) (k=O, 1,2, 
. . . . N- 1) which leads to such a set of observations. 

Basically, this corresponds to the following practical situation. With the in- 
formation observed, we have monitoring data over the fixed interval [0, N]. 
For each time point k within the interval, we wish to obtain the optimal infer- 
ence x(k/N) of the state X(k) which is based on all the available measure- 
ment data YG) G=l, 2, . . . . N). 
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Our primary interest here is to have a relationship between x&/N) and the 
observed information Y(l), Y(2), . . . . Y(N). In particular, we wish to have an 
inference engine which is recursive in time, thereby permitting us to perform 
diagnosis efficiently with a computer. The algorithms can be derived by using 
Kalman filtering theory [ 161 and the results can be found in reference [ 111. 

As is shown in Fig. 2, the integrated diagnosis system consists of rule-based 
heuristic inference, Bayesian network inference, and Kalman filtering infer- 
ence. These inference functions are jointly provided by rule-based backward/ 
forward chaining, cause-consequence relationship-based Bayesian inference 
theory and system model-based Kalman filtering inference theory. When the 
reasoning is based on rule-based knowledge, backward chaining is used to per- 
form diagnosis. If the domain knowledge is represented by Bayesian networks, 
the reasoning conclusions are obtained by propagating the observed evidence 
through the whole network. When the knowledge base for the target problem 
is system model-based, Kalman filtering theory is used to perform inference. 
The inference is to determine an approximation to the time history of the 
system’s response variables from the erroneous measurements. The approxi- 
mation is to be chosen so that the estimate error is minimized. Therefore, the 
obtained approximation of the observed data is optimal in the sense of best 
estimate of the real situation. 

3. Detecting failures of incinerator control system 

The diagnosis inference engines presented in Section 2 are system or process 
independent. In other words, they can be applied to any diagnosis problems as 
long as the diagnosis problem can be well defined by using heuristic rules, 
probabilistic causal networks and functional system models. As examples of 
how to apply the proposed diagnosis method, failure diagnosis of steam tem- 
perature regulator and the detection of thermocouple drifts are presented in 
this section. 

3.1 Combustion boiler control system 
Figure 3 shows the combustion-boiler instrumentation system of a liquid 

injection incinerator. There are three control functions provided by the instru- 
mentation system. They are control of the waste organic flow rate and the 
amount of excess air(v-12-v-13), the three-element feedwater control system 
(LT-FE-FIC-V-03), and the SkUn temperature regulator (TE-408-TIC-408-V- 
09). These three controllers are designed to control the following nine state 
variables: X1 (enthalpy of water in mud drum), X, (amount of water in drum), 
X, (the mean density of steam-water mixture in risers), X4 (density of the 
steam), X5 (primary superheater tube temperature), X, (secondary superhea- 
ter tube temperature), X7 (desuperheater tube temperature ) , X8 (economizer 
tube temperature), and X, (air preheater tube temperature ) . The system state 
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- Economlzar & b FLUE GAS TO QUENCH AND PACKED TOWER 

Fig. 3. The incinerator-boiler system. 

variables are controlled by three control variables: U, (fuel and organic waste 
flow rate), U, (feedwater flow rate), and U, (desuperheater bypass valve po- 
sition); they are affected by five input variables: N1 (excess air), N2 (air tem- 
perature), IV3 (feedwater temperature), N4 (fuel temperature), and N5 (steam 
flow rate). 

3.2 Diagnosis of steam temperature regulator malfunctions 
As shown in Fig. 3, thermocouple TE-408 measures the temperature of high 

pressure steam to the turbine and temperature transmitter (TT-408) transmits 
a signal to remote temperature indicating controller (TIC-408) in console dis- 
play screen. TIC-408 sends a control signal to local I/P converter (~~-408). TY- 

408 converts the electric signal to a pneumatic signal which modulates the 
temperature control valve V-09. 

As shown in the figure, many valves, pumps, sensors, transmitters, indica- 
tors, recorders, relays, and regulators are served as part of the operation system 
to control the steam temperature. Any of these instrument components may 
fail for a variety of reasons during the operation period. Thermocouple TE-408 
may fail to measure the steam temperature correctly; or the temperature trans- 
mitter TT-408 may fail to transmit the signal to the relay ~~-408, which leads 
to the failure of the steam temperature control system. It is not difficult to 
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understand that the failure rate of different components should be different. 
In addition, the failure probability of the same component should be different 
for different periods of operation. 

The Bayesian network for the steam temperature control system has been 
constructed causally and is shown in Fig. 4. Xl through X11 are used to rep- 
resent the failure of the individual instrument components in the steam tem- 
perature control system (as described in Table 1). Parameters Yl through Y5 
are explained as follows: 

v-01 v-02 v-10 TY-408 TIC-408 ~1.408 

P-01 

Fig. 4. Bayesian network for the failure of the steam temperature regulator. 

TABLE 1 

Quantification of the Bayesisn network for the steam temperature regulator 

Root Description of the 
nodes components 

Failure rate Prior failure Prior failure Prior failure 
&d-500-1984) probability probability probability 
failures/l0 + 6h (2 years) (5 years) (5 years) 

(A) (B) (C) 

Xl 

x2 

x3 
x4 
X5 
X6 

x7 

X8 

x9 

x10 
x11 

Centrifugal pump 
(P-01) 543.0 (p.1001) 0.907 (0.5 y) 0.907 (0.5 y) 
Standby centrifugal 
pump (P-02) 20.00 (p.918) 0.084 (0.5 y) 0.084 (0.5 y) 
Gate (>3”) (V-01) 1.60 (p.1110) 0.028 0.068 
Gate (>3”) (V-02) 1.60 (p.1110) 0.028 0.068 
Gate (> 3”) (V-10) 1.60 (p.1110) 0.028 0.068 
Pneumatic diaphrag m 
(V-09) 3.49 (p.1126) 0.059 0.142 
Temperature relay (TY - 
408) 3.02 (p.529) 0.052 0.124 
Temperature indicator 
(TIC-408) 9.0 (p.544) 0.039 (0.5 y) 0.039 (0.5 y) 
Temperature transmitter 
(TT-408) 2.39 (p.530) 0.041 0.099 
Thermocouple (TE-408) 9.19 (p.546) 0.040 (0.5 y) 0.040 (0.5 y) 
Desuperheater 2.70 (p.1356) 0.046 0.112 

0.907 (0.5 y) 

0.084 (0.5 y) 
0.068 
0.068 
0.068 

0.142 

0.124 

0.326 

0.099 
0.331 
0.112 



V-01 v-02 v-10 m-408 TIC-408 ‘P-408 

IF (X4) = (0.068.0.932) 
f (X4) = (0.1%,0.096) 

d (X7) = (0.124, 0.876) 
f (X7) = (0.208, 0.035) 

If (?clo)= (0.331.0.669) 
n’ (x10)= (0.274.0.045) 

lf (Y2) = (0.059, 0.810) 
f (Y2) = (0.226,O.lll) 

If f.Y5) = (0.151, 0.306) 
h’ (Y-5) = (0.598. 0.075) 

fl (X2) = (0.084,0.916) II' (X3) = (0.068.0.932) 
f (X2) = (l.Oco. lm0) n' (X3) = (0.1%,0.096) 

fi‘ (X5) = (0.06&0.932) d (X6) = (0.142,0.858) 
1: (X5) = (0.196.0.096) f (X6) = (0.213,O.W 

fl (X8) = (0.326.0.674) d (X9) = (0.099,0.%1) 
f (XrJ) = (0.271,0.045) h' (X9) = (0.204,O.O~) 

fl(~11)=(0.112,0.888) rf (Yl) = (0.076,0.831) 
2 (x,1)= (0.206, 0.102) f (Yl) = (0.220. 0.109) 

fi‘ (~3) = (0.176.0.356) rP (Y4) = (0.062.0.673) 
f (1'3) = (0.513.O.OS5) 2 (u4) = (0.272. 0.134) 

If " . = (0.090.0.183) 
f (T) = (1.Om.0.m) 

Fig. 5. Bayesian network for Eault diagnosis of the steam temperature regulator. 

Yl is the failure of the feedwater pump system. 
Y2 is the failure of all the valves. 
Y3 is the failure of all the temperature measurement elements. 
Y4 is the failure of both pump system and all the valves. 
Y5 is the failure of the temperature regulator. 
The quantification of this Bayesian network is based on the IEEE Std-500- 

1984 failure rate handbook. For convienence, we assume that all the nodes in 
the network can take either failure status ( 1) or success status (0). The inter- 
nal elliptical nodes are OR gate and the internal rectangular nodes are AND 
gate. Based on the IEEE Std-500-1984 failure rate handbook, prior failure prob- 
abilities of the individual instrument elements are estimated and given in Ta- 
ble 1. Here, we assume the failure is exponential. In other words, the relation- 
ship between failure probability and failure rate is given by following equation. 

P(t) =1-e@, 

where p is the element failure rate. 
P(t) is the failure probability of the corresponding element at time t. The 

quantification of the Bayesian network corresponds to the following system 
operation conditions: 

Operation condition A 
1. The system has been operated for 2 years. 
2. The feedwater pumps (p-01 & p-02) have been on service for 0.5 years. 
3. Thermocouple (TE-408) had been replaced for 0.5 years. 
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4. The temperature indicating controller (TIC-408) had been replaced for 0.5 
years. 

@NX7itiOn condition B. 
1. The system has been operated for 5 years. 
2. The feedwater pumps (p-01 & p-02) have been on service for 0.5 years. 
3. Thermocouple (TE-408) had been replaced for 0.5 years. 
4. The temperature indicating controller (TIC-408) had been replaced for 0.5 

years. 
Operation condition C. 
1. The system has been operated for 5 years. 
2. The feedwater pumps (p-01 & p-02) have been on service for 0.5 years. 
3. There is no replacement or maintenance. 
As an example of applying the proposed diagnosis algorithm, Fig. 5 shows 

the Bayesian network for the steam temperature regulator. Assume we ob- 
served evidence T= 1, i.e., the failure of the steam temperature regulator has 
occurred. What we need to do is to find out the most probable causes of the 
observed consequence T= 1. 

The boundary conditions for this diagnosis problem are: 
1. T is the evidence node, i.e., ;2* (2’) = (1.000, 0.000) 
2. Root nodes: Xi (i=l, 2, . . . . 11) 
P (Xl) = (0.907,0.093) P (X2) = (0.084,0.916) 
ny (X3) = (0.068,0932) ny (X4) = (0.068,0.932) 
IT* (X5) = (0.068,0.932) P (X6) = (0.142,0.858) 
lir* (X7) = (0.124,0.876) Ry (X8) = (0.326,0.674) 
nY (X9) = (0.099.0.901) nY (X10) = (0.331,0.669) 
P (X11) = (0.112,0.888) 
Following the three-step inference algorithm, we can determine all other IP 

messages and A* messages through the network. 

II* Message passing 
Because all parent node Xi have only one child Yj, we have 

l7$i+yj (Xi) =lir* (Xi) 

From eqn. (7 ) , we have 

n* (Yl) =xy;;2 P( Yl/Xl, X2) ny (Xl) ny (X2) 

n* (Y1=l)=xl, x2 MAX P( Yl,=l/Xl,X2) n* (Xl) ny (X2) 
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P(Yl=l/x1=l,x2=o)n*(xl=l,)lir*(x2=o), 

P(Yl=l/x1=1,x2=l)P(xl=l)P(x2=l)] 

=P(Yl=l/Xl=l,X2=1) ITP (X1=1) ny (X2=1) 

=P (Xl=l)n* (X2=1)=0.076 

P (Yl=O)= x~;2P(Yl=o/x1, X2) IT* (Xl) lir* (X2) 
9 

=MAx [P(Yl=O/Xl=O, X2=0) ny (X1=0) P (X2=0), 

P(Yl=o/xl=o,x2=l)~ (X1=0)17* (X2=1), 

P(Yl=o/xl=l,x2=o)P(xl=1,~(x2=o), 

P(Y1=o/xl=l,x2=l)ny (X1=1) IP (X2=1)] 

= MAX [ 0.093 X 0.916,0.093 X 0.084,0.907 X 0.916]= 0.831 

Therefore, we have 

ZP (Yl) = (0.076,0.831) 

Similarly, we have 
P ( Y2) = (0.059,0.810) 
IT* (Y3) = (0.176,0.356) 
nY (Y4) = (0.062,0.673) 
P (Y5) = (0.151,0.306) 
P (T) = (0.090,0.183) 

A* Message passing with evidence T= 1 
Because T is an evidence node, we have A*(T) = (1.000, 0.000). 

From eqn. (6)) we have 

L, (Y4) = T ;yxll A* (T) P(T/Y4, Y5, X11) 17 (Y5) ITC (X11) 
9 , 

= yr;ll P( T= l/Y4, Y5, X11) IT* (Y5) n* (X11) 
, 

MAX &+T (Y4=1) = Y5, Xl1 P(T=l/Y4=1, Y5,Xll) IT+ (Y5) IT* (X11) 

=n* (Y5=0) n* (X11=0) ~0.272 
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&+, (Y4=0) = y;Fll P(T=l/Y4=0, Y5, X11) ZF (Y5) IT* (X11) 
3 

=y~~ll[P(T=1/Y4=0, Y5,Xll) IT* (Y5) 17x (X11)] 

Ax [ny (Y5=l)lir* (Xll=O),n* (Y5=O)IT* (X11=1)] 

=MAX [0.151X0.888,0.306x0.112] =0.134 

Therefore, we have 

%eT ( Y4) = 0.272,0.134) 
/2* (Y4) =A*,+, (Y4) = (0.272,0.134) 

Similarly, we can determine all the 3, messages in the network. 

A* (Xl) =n~,+,, (Xl) = (1.000,1.000) 
A* (X2 1 =AL,, (X2) = (1.000,1.000) 
A* (X3) =A;s+y2 (X3) = (0.196,0.096) 
I* (X4) =A:4+y2 (X4) = (0.196,0.096) 
A* (X5) =&,_yz (X5) = (0.196,0.096) 
A* (X6) =A&+y5 (X6) = (0.213,0.105) 
A* (X7 1 =&+x3 (X7) = (0.208,0.035) 
A* (X8) =&+u3 (X8) = (0.271,0.045) 
I* (X9) =&cy3 (X9) = (0.204,0.034) 
J.* (Xl0 1 =&m+ Y3 (X10) = (0.274,0.045) 
A* (X11) =&+T (X11) = (0.206,0.102) 
A* (Yl) =&+u4 (Yl) = (0.220,0.109) 
A* (Y2) =A*,+, (Y2) = (0.226,O.lll) 
A* (Y3) =A*,+, (Y3) = (0.513,0.085) 
A* (Y5) =A*,+, (Y4) = (0.272,0.134) 
A* (Y5) =3L*y5cr (Y5) = (0.598,0.075) 

The corresponding belief functions are determined as follows: 

BEL* (xl) =A* (xl) fl (xl) = (0.907,0.093) 
BEL* (X2) =iz* (X2) p (X2) = (0.084,0.916) 
BEL* (X3) =A* (X3) fl (X3) = (0.013,0.089) 
BEL* (X4) =A* (X,) TT* (X,) = (0.013,0.089) 
BEL* (X5) =;2* (X5) n* (X5) = (0.013,0.089) 
BEL* (X6) =A* (X6) II* (X6) = (0.030,0.090) 
BEL* (X7) =A* (X7) fl (X7) = (0.026,0.031) 
BEL* (X8) =;1* (X8) p (X8) = (0.088,0.030) 
BEL* (x9) =A* (x9) lir* (x9) = (0.020,0.031) 
BEL* (X10) =A* (X8) m (X10) = (0.091,0.030) 
BEL* (X11) =A* (X9) p (X,,) = (0.023,0.091) 
BEL* (Yl) =A* (Yl) lir* (Yl) = (0.017,0.091) 
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BEL* (Y2) =A* (Y2) n* (Y2) = (0.013,0.090) 
BEL* (Y3)=1* (Y3)1Tr (Y3)=(0.090,0.030) 
BEL* (Y4) =A* (Y4) p (Y4) = (0.017,0.090) 
BEL* (n)=i* (B)p (%)=(0.090,0.023) 
BEL* (T) =A* (T) p (T) = (0.090, 0.000) 

The diagnosis results are: 

Xl* =MAX -l BEL* (X) = 1 (pump P-01 has failed) 
X2* = MAX -l BEL* (X2) = 0 (the standby pump P-01 is working) 
X~*=MAX-‘BEL* (X3)=0 (thevalvev-Olisworking) 
X4* =MAx -’ BEL* (X4) = 0 (the valve V-02 is working) 
X5* =MAx-’ BEL* (X5) =O (the valve V-10 is working) 
X6* = MAX -’ BEL* (X6) = 0 (the valve V-09 is working) 
X7* =MAX -’ BEL* (X7) =O (the temperature relay TY-408 is working) 
X8* = MAX -’ BEL* (X8) = 1 (the temperature indicator TIC-408 has failed) 
X9* =MAx -I BEL* (X9) =O (the temperature transmitter TT-408 is 

working) 
X10* = MAX -’ BEL* (X10) = 1 (the thermocouple T&408 has failed) 
X11* =MAX-1 BEL* (X11) =O (the desuperheater is working) 
Y l* = MAX -’ BEL* ( Yl ) = 0 (the pump system is working) 
Y2* = MAX - l BEL* ( Y2 ) = 0 (all the valves are working) 
Y3* =MAx -’ BEL* ( Y3) = 1 (some of the temperature instruments has 

failed) 
Y4* = MAX - ’ BEL* ( Y4) = 0 (both pump system and valve line are working) 
Y5* = MAX - ’ BEL* ( Y5 ) = 1 (the temperature regulator has failed) 
2’ * = MAX- ’ BEL* ( T) = 1 (the steam temperature control system has failed) 

Therefore, we conclude that the most probable causes of the failure of steam 
temperature control system are: 1. the failure of thermocouple TE-408, and 2. 
the failure of temperature indicating controller TIC-408. 

3.3 Detection of thermocouple drifts 
Thermocouples, properly usedunder favorable conditions, can measure tem- 

perature within an acceptable tolerance. However, when improperly applied or 
exposed to hostile mechanical, chemical, thermal environments such as haz- 
ardous waste incinerators, they often fail without the error being evident in 
the temperature record. Thermocouple drift, the thermal electromotive force 
(emf) change at constant temperature, is an important thermocouple failure 
mode that may seriously affect the operation of the whole incineration system. 
Thermocouples may drift either low or high up to lOO”C, and thermocouple 
drift may be caused by many factors such as insulator and sheath materials, 
assembly geometry, fabrication method, gas environment, rate of thermal cy- 
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cling, etc. Therefore, it is very difficult to determine if there is a thermocouple 
drift. 

When this kind of hidden failure occurs during measurement, deliberate re- 
cording and use of supplementary information is necessary to distinguish valid 
from faulty monitoring data. Here, we will show how to use the proposed meth- 
odology in Section 2 to diagnose spurious temperature monitoring data by us- 
ing supplementary information, such as system model-based Kalman filtering 
information, causal relationship-based Bayesian inference information, and 
the real-time monitoring information. 

Based on the real-time monitoring data, the system model-based Kalman 
filtering information (Xi(k), i=l, 2, . . . . 10; k=O, 1, 2, . ..) and the Bayesian 
inference information (failure probabilities of the feedwater system and the 
steam temperature regulator), we formulate the following heuristic rules to 
detect steam temperature thermocouple drift ( STTD ) . 

RULESTTD-001 
IF 

1) 1 U,(k) -U,(k-1) If 1 U,(k-1) - U,(k-2) 1 au, 
(the real-time monitoring information) 

and 2) I U,(k) -U,(design) I ISU, 
and 3) Prob ( T) (feedwater system) I safety margin 

(Bayesian inference information) 
THEN 

the feedwater supply system is normal 
RULESTTD-008 
IF 

1)1&(k)-U,(k-l)I+IU,(k-l)-U,(k-2)116UI 
(the real-time monitoring information) 

and2)lN,(k)-N,(k-l)l+IN,(k-1)-NI(k-2)(16NI 
(the real-time monitoring information) 

THEN 
the heating rate is constant 

RULESTTD-003 
IF 

l)l~,(k+2)-~,(k+~)l+I~,(~+l)-X,(k)l+lX,(k)- 
X,(k-1) I + IX,(k-1)-X,(k-2)l ISX, 
(provided by Kalman filtering inference) 

and 2) IX,(k) -X,(design) I ISX, 
and 3 ) Prob ( 2’) (the steam temperature control) I P, 

(Bayesian inference information) 
THEN 

the desuperheater system is normal 
RULE STTD-004 



44 

IF 
l~lX,~~+2~-X,~~+~~l+l~,~~+~~-~,~~~l+l~,~~~- 
X,(k-1) I + lX,(k-1) - X,(k-2) 1 ssx, 
(provided by Kalman filtering inference) 
and 2) IX,(k) - X,(design) I 56X6 
and3) IN,(k) - N,(k-1) I + IN,(k-1) - N,(k-2) I IdN5 

(provided by monitoring information) 
and4) IN,(k) -iV6(design) I 16N5 
THEN 

the steam line is normal 
RULE STTD-005 

IF 
Prob (TIC-408) I P, (provided by the Bayesian network) 

THEN 
the temperature indicating is normal 

RULE STTD-006 
IF 

l)IYz(k)-Y,(design)lZdriftmargin 
(provided by monitoring information) 

and 2) the temperature indicating is normal 
and 3) the steam line is normal 
and 4) the desuperheater system is normal 
and 5) the feedwater supply system is normal 

and 6) the heating rate is constant 
THEN 

the thermocouple TE-408 is drifting rapidly 
RULE STTD-007 

IF 
1) the thermocouple TETE-408 is drifting rapidly 

and 2) Yz (k) - Y2 (design) 2 drift margin 
THEN 

the thermocouple TE-408 drifts high 
RULE S’M’D -008 

IF 
1) the thermocouple TE-408 is drifting rapidly 

and2) Y,(k)-Y,(design)5+lriftmargin 
THEN 

The thermocouple TE-408 drifts low 
RULE STTD-000 

IF 
1) the heating rate is constant 

and 2) the feedwater supply system is normal 
and 3 ) Prob ( 2’) I; P, (provided by the steam temperature control network) 
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and4) U,(k)-U3(k-l)26U3, U,(k-l)-U,(k-2)2SU,,..., 
U, (12 - i) - Us ( k - i - 1) 2 SU, (real-time monitoring data) 

and5) X6(k) -X,(k-1) I -SX,, X,(/z-l) -X,(/Z-~) I -8X,, . . . . 
X,(k-i)-X,(k-i-1)1 -SX, (providedbyKalmanfiltering) 

and6) Yz(k)-Yz(k-l)>SYz, Yz(k-1)-Y,(K-2)1SY,,..., 
Y2(k-i)-Y2(k-i-1)26Yz (real-timemonitoringdata) 

THEN 
the thermocouple TE-408 is drifting high slowly 

RULE STTD-010 
IF 

1) the heating rate is constant 
and 2) the feedwater supply system is normal 
and 3 ) Prob ( YJ I P, (provided by the steam temperature control network) 
and4) U,(k)-U3(k-l)I-6U3, &(k-l)-&(k-2)5-Wa,..., 

U,(k-i)-U,(k-i-1)5-6& (real-timemonitoringdata) 
and5)X,(k)-X,(k-1)2dX,,X,(k-l)-X,(k-2)26X,,..., 

X6 ( k - i) -X6 (k - i - 1) 2 SX, (provided by Kalman filtering) 
and6) Yz(k)-Y,(k-l)I-SY,, Yz(k-1)-Y,(k-2)<-dY,,..., 

Y2 ( k - i) - Yz ( k - i - 1) I - SY, (real-time monitoring data) 
THEN 

the thermocouple TE-408 is drifting low slowly. 

4. Conclusions 

The automation of fault diagnosis was primarily handicapped in the past by 
the lack of appropriate techniques to represent the knowledge-based reasoning 
of an expert diagnostician. Many of the past approaches in applying expert 
system methodology to fault diagnosis are system or process specific. The di- 
agnosis inference engines presented in this paper are system or process inde- 
pendent. In other words, the proposed diagnosis framework can be applied to 
many other diagnosis problems as long as the problem can be well defined by 
using heuristic rules, probabilistic causal networks, and functional system 
models. The problem domain independence is guaranteed by a generic infer- 
ence engine which is jointly performed by rule-based backward/forward chain- 
ing, causal knowledge-based Bayesian network inference, and system model- 
based Kalman filtering inference. 
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